1,098 research outputs found

    Role Playing Learning for Socially Concomitant Mobile Robot Navigation

    Full text link
    In this paper, we present the Role Playing Learning (RPL) scheme for a mobile robot to navigate socially with its human companion in populated environments. Neural networks (NN) are constructed to parameterize a stochastic policy that directly maps sensory data collected by the robot to its velocity outputs, while respecting a set of social norms. An efficient simulative learning environment is built with maps and pedestrians trajectories collected from a number of real-world crowd data sets. In each learning iteration, a robot equipped with the NN policy is created virtually in the learning environment to play itself as a companied pedestrian and navigate towards a goal in a socially concomitant manner. Thus, we call this process Role Playing Learning, which is formulated under a reinforcement learning (RL) framework. The NN policy is optimized end-to-end using Trust Region Policy Optimization (TRPO), with consideration of the imperfectness of robot's sensor measurements. Simulative and experimental results are provided to demonstrate the efficacy and superiority of our method

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN

    Reference adaptation for robots in physical interactions with unknown environments

    Get PDF
    In this paper, we propose a method of reference adaptation for robots in physical interactions with unknown environments. A cost function is constructed to describe the interaction performance, which combines trajectory tracking error and interaction force between the robot and the environment. It is minimized by the proposed reference adaptation based on trajectory parametrization and iterative learning. An adaptive impedance control is developed to make the robot be governed by the target impedance model. Simulation and experiment studies are conducted to verify the effectiveness of the proposed method

    Adaptive control for robot navigation in human environments based on social force model

    Get PDF
    In this paper, we introduce a novel control scheme based on the social force model for robots navigating in human environments. Social proxemics potential field is constructed based on the theory of proxemics and used to generate social interaction force for design of robot motion control. A combined kinematic/dynamic control is proposed to make the robot follow the target social force model, in the presence of kinematic velocity constraints. Under the proposed framework, given a specific social convention, robot is able to generate and modify its path smoothly without violating the proxemics constraints. The validity of the proposed method is verified through experimental studies using the V-rep platform

    Optimal critic learning for robot control in time-varying environments

    Get PDF
    In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q-function based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. Simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified

    Alternating Direction Method of Multipliers for Constrained Iterative LQR in Autonomous Driving

    Full text link
    In the context of autonomous driving, the iterative linear quadratic regulator (iLQR) is known to be an efficient approach to deal with the nonlinear vehicle models in motion planning problems. Particularly, the constrained iLQR algorithm has shown noteworthy advantageous outcomes of computation efficiency in achieving motion planning tasks under general constraints of different types. However, the constrained iLQR methodology requires a feasible trajectory at the first iteration as a prerequisite. Also, the methodology leaves open the possibility for incorporation of fast, efficient, and effective optimization methods (i.e., fast-solvers) to further speed up the optimization process such that the requirements of real-time implementation can be successfully fulfilled. In this paper, a well-defined and commonly-encountered motion planning problem is formulated under nonlinear vehicle dynamics and various constraints, and an alternating direction method of multipliers (ADMM) is developed to determine the optimal control actions. With this development, the approach is able to circumvent the feasibility requirement of the trajectory at the first iteration. An illustrative example of motion planning in autonomous vehicles is then investigated with different driving scenarios taken into consideration. As clearly observed from the simulation results, the significance of this work in terms of obstacle avoidance is demonstrated. Furthermore, a noteworthy achievement of high computation efficiency is attained; and as a result, real-time computation and implementation can be realized through this framework, and thus it provides additional safety to the on-road driving tasks.Comment: 9 pages, 8 figure
    corecore